Avoiding Overfitting in Deep Neural Networks for Clinical Opinions Generation from General Blood Test Results
We have used deep neural networks(DNNs)to generate clinical opinions from general blood test results.DNNs have overfitting problem in general.We believe the complex structure of DNN and insufficient data to be the major reasons of overfitting in our case.In this paper,we apply dropout and batch normalization to avoid overfitting.Experimental results show the improvement in the performance of the DNNs.
Hematologic Tests Neural Networks (Computer) Clinical Decision-Making
Youjin Kim Han-Gyu Kim Zhun Li Ho-Jin Choi
School of Computing,KAIST,Daejeon,Korea
国际会议
第十六届世界医药健康信息学大会((MEDINFO2017)、第二届世界医药健康信息学华语论坛(WCHIS 2017)、第15届全国医药信息学大会(CMIA 2017)
苏州
英文
1274-1274
2017-08-21(万方平台首次上网日期,不代表论文的发表时间)