会议专题

Stability of Residual Stresses in Ultrasonic Surface Deep Rolling Treated Ti-6Al-4V Alloy under Cyclic Loading

  Compressive residual stresses have been found to affect fatigue crack growth behavior by delaying the crack initiation and by decelerating the crack propagation rate.Therefore,various mechanical surface treatment techniques have been developed to produce the compressive residual stresses on the surface of components.However,the residual stresses will relax due to cyclic loading.Hence,the stability of residual stress during fatigue process is a great importance aspect for design of components.In this paper,the ultrasonic surface deep rolling was used to generate the compressive residual stress near the surface of Ti-6Al-4V.The stress relaxation behavior was identified during the low cycle fatigue process.The X-ray diffraction method was used to determine the magnitude and sign of residual stress.Results showed that under cyclic loading,the residual stress relaxation occurred fast in the first few cycles then became stable.Furthermore,it was found that relaxation rates of residual stress were depended on the applied stress.

Ultrasonic Surface Deep Rolling Residual Stress Stress Relaxation Fatigue

MiaodongMao XianchengZhang

Key Laboratory of Pressurized System and Safety,MOE,School of Mechanical Engineering,East China University of Science and Technology,200237 Shanghai,Peoples Republic of China

国际会议

2016 International Symposium on Structural Integrity,ISSI—2016(2016国际结构完整性研讨会)

天津

英文

173-177

2016-05-26(万方平台首次上网日期,不代表论文的发表时间)