会议专题

A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics

  The paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X),or the MALMX model,with dynamic conditional correlations,appropriate regularity conditions,and associated asymptotic theory.This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical estimation.The underlying vector random coefficient autoregressive process,which has well established regularity conditions and associated asymptotic properties,is discussed,and a simple explanation is given as to why only the diagonal BEKK model,and not the Hadamard,triangular or full BEKK models,has regularity conditions and asymptotic properties.Various special cases,including the diagonal BEKK model of Baba et al.(1985) and Engle and Kroner (1995),VARMA-GARCH model of Ling and McAleer (2003),and VARMA-AGARCH model of McAleer et al.(2009),are discussed.There does not seem to have been a derivation of a univariate conditional volatility model with exogenous variables (X) that has dynamic conditional correlations,appropriate regularity conditions,and associated asymptotic theory.Therefore,the derivation of a multivariate conditional volatility model with exogenous variables (X) that has regularity conditions and asymptotic theory would seem to be a significant extension of the existing literature.

Multivariate conditional volatility Vector random coefficient autoregressive process Asymmetry Long memory Exogenous variables Dynamic conditional correlations Regularity conditions Asymptotic properties

Manabu Asai Michael McAleer

Faculty of Economics Soka University,Japan Department of Quantitative Finance National Tsing Hua University,Taiwan

国际会议

ICEFS2017(International Conference on Economics, Finance and Statistics 2017) (2017经济、金融与统计国际会议)

香港

英文

1-7

2017-01-14(万方平台首次上网日期,不代表论文的发表时间)