The Physical and Mathematical Modelling of Swirling Flow by TurboSwirl in an Uphill Teeming Ingot Casting Process
Ingot casting is widely used to produce some certain specialty steel grades.During the process of teeming the liquid steel from the ladle to the mould for a final solidification,the high velocity of the liquid steel can result in an uneven flow pattern either in the vertical and horizontal runners or in the mould.This can cause some serious problems,such as a high erosion of refractory walls or a mould flux entrapment.Here,some research indicate that a swirling flow is beneficial for making the flow pattern even and for reducing turbulence in the runners.Recently,a new swirling flow generation component,TurboSwirl,was applied to improve the flow pattern of the liquid steel as it flows into the mould so that a more stable flow could be obtained.The TurboSwirl is located on the intersection of the horizontal and vertical runners near the mould.It generates a tangential flow that can be used with an expanding nozzle with a flaring angle in order to decrease the vertical flow velocity.Moreover,a mathematical model has been developed to optimize the geometry of the physical model.The results shows that a much more beneficial flow pattern can be obtained by reducing the flaring angle or moving the vertical runner to an off-center position of the TurboSwirl,according to the numerical models.Therefore,a water modelling experiment was built,including the TurboSwirl,one mould and the runners.Tracers will be mixed into the water to detect the flow pattern and the velocity of the fluid would be recorded by a digital motion analysis recorder for later analysis.Firstly,different flaring angles of the expanding nozzle were simulated and compared.The results could supply a good support to the following water modelling experiments and to prove that the TurboSwirl setup produces a much calmer initial filling of the mould,compared to a conventional setup.
water model ingot casting TurboSwirl swirling flow velocity detection
Haitong BAI Mikael ERSSON P(a)r G. J(O)NSSON
Division of Applied Process Metallurgy,Department of Materials Science and Engineering,KTH Royal Institute of Technology,SE-100 44 Stockholm,Sweden
国际会议
the 6th International Congress on the Science and Technology of Steelmaking,ICS2015(第六届国际炼钢科技大会)
北京
英文
473-476
2015-05-12(万方平台首次上网日期,不代表论文的发表时间)