会议专题

Improved K-medoids Clustering Algorithm under Semantic Web

  K-medoids clustering algorithm is highly efficient in classifying cluster categories.Based on algorithm analysis and selection improvement of centre point K,this paper sets up a web model of ontology data set object.It tries to demonstrate through experiment evaluation that the improved algorithm can greatly enhance the accuracy of clustering results under semantic web.

component Ontology Semantic Web K-mediods algorithm

Ji Wentian Guo Qingju Zhong Sheng Zhou En

Department of Software Engineering Hainan College of Software Technology Qionghai,China College of Information Science & Technology Hainan University Haikou,China

国际会议

2013 2nd International Conference on Computer Science and Electronics Engineering(ICCSEE2013)(2013年第二届计算机科学与电子工程国际会议)

杭州

英文

731-733

2013-03-22(万方平台首次上网日期,不代表论文的发表时间)