会议专题

The parameters MCMC estimation of HMMs with transition density function

  The parameter estimation of HMM is critical to all its applications.The classic B-W algorithm is not flexible with the initial parameters and is easy to fall into the local optimal solution.Bayes estimation of it makes posterior risk minimization,and make full use of the experience,history information and other information other than samples,is useful in many cases.Employs the great computational power of MCMC,the MCMC estimation of HMM parameter can be more effective.

HMM Gibbs Sampling Conjugate Priors

Chengwen Zhu Yu Ge Lina Lu Zhang Tian Chuizhen Zeng

Wuhan Ordnancy Non-commissioned Officer Academy of PLA Wuhan,China

国际会议

2013 2nd International Conference on Computer Science and Electronics Engineering(ICCSEE2013)(2013年第二届计算机科学与电子工程国际会议)

杭州

英文

1306-1309

2013-03-22(万方平台首次上网日期,不代表论文的发表时间)