The parameters MCMC estimation of HMMs with transition density function
The parameter estimation of HMM is critical to all its applications.The classic B-W algorithm is not flexible with the initial parameters and is easy to fall into the local optimal solution.Bayes estimation of it makes posterior risk minimization,and make full use of the experience,history information and other information other than samples,is useful in many cases.Employs the great computational power of MCMC,the MCMC estimation of HMM parameter can be more effective.
HMM Gibbs Sampling Conjugate Priors
Chengwen Zhu Yu Ge Lina Lu Zhang Tian Chuizhen Zeng
Wuhan Ordnancy Non-commissioned Officer Academy of PLA Wuhan,China
国际会议
杭州
英文
1306-1309
2013-03-22(万方平台首次上网日期,不代表论文的发表时间)