Qualitative Analysis of a ratio-dependent Chemostat Model with Holling-(n+1) Type Functional Response
In this paper,the ratio-dependent chemostat model with Holling-(n+l) type functional response is considered.The model develops the Monod model and the ratio-dependent model.By use of the Poincar-Bendixson theory we prove the existence of limit cycle.Detailed qualitative analysis about the global asymptotic stability of its equilibria is carried out by using the Lyapunov-LaSalle invariant principle and the method of Dulac criterion.
Chemostat Hopf Bifurcation Limit Cycle Lyapunov-LaSalle Invariance Principle Stability
Qinglai Dong Mingjuan Sun
School of Mathematics and Computer Science, Yanan University, Yanan 716000, China
国际会议
厦门
英文
947-950
2012-12-28(万方平台首次上网日期,不代表论文的发表时间)