会议专题

基于分裂Bregman算法的玉米种子品种识别

  玉米品种的纯度和玉米产量密切相关,因此玉米品种的筛选对提高粮食产量具有非常重要的作用.基于机器视觉的自动品种筛选技术通常分为图像分割、特征获取和分类等三步,图像分割的精度直接决定了种子识别准确度.在众多的图像分割技术中,本研究尝试将图像分割变分模型及其对应的数值求解方法-分裂Bregman算法应用于玉米种子自动识别中.该方法具有精度高,分割边界封闭连续等有利于玉米特征提取的优点.此外,本文还将自适应小波配置法用于求解分裂Bregman算法中的最优条件,得到一种更为精确高效的分裂Bregman算法.进而结合改进分裂Bregman算法得到的不同玉米品种特征和支持向量机技术得到了一种新的玉米品种分类器.采用该方法对玉米品种农大108和鲁丹981进行实验,识别精度分别达到97.3%和98%,相对于由其他分割方法得到的分类结果精度(95%)要高.

图像识别 特征提取 模型 分裂Bregman算法 多层小波插值算子

江景涛 王延耀 杨然兵 梅树立

青岛农业大学机电工程学院,青岛266109 中国农业大学信息与电气工程学院,北京100083

国际会议

Fourteenth International Conference on Mechanization of Field Experiments(第14届国际田间试验机械化学术研讨会)(IAMFE/China‘2012)

青岛

英文

280-284

2012-10-12(万方平台首次上网日期,不代表论文的发表时间)