Data fusion for MFL signal characterization
The objective of data fusion is to be able to draw inferences that may not be feasible with data from a single sensor alone.In this paper,data from three sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data.The three sensors measure the axial,radial and tangential components of the MFL field.Data is fused at the feature level.Examples of signal features are amplitude,width,etc.A radial basis function network (RBFN) is then employed to map the fused features appropriately to obtain the geometric profile of the defect.The feasibility of the approach is evaluated using the data obtained from the MFL inspection of oil pipes.The results obtained by fusing the axial,radial and tangential components appear to be better than those obtained using the axial and radial component alone.
magnetic flux leakage data fusion characterization radial basis function network
Qiang Song
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing,China
国际会议
重庆
英文
3519-3523
2010-12-11(万方平台首次上网日期,不代表论文的发表时间)