The evaporation effect of front keyhole wall in penetration welding with an electron beam
The process of vacuum electron beam welding is characterized by deep-penetration with the action of keyhole effect. The assumption of simple cylindrical physical model of keyhole is reasonable according to the thermal transfer of the keyhole effect during welding. There is an intensive evaporation arises from the front keyhole wall owing to the high energy density of electron beam. Therefore, an analysis model of heat transfer at the interface of vapor phase and front keyhole wall was proposed to the temperature calculation on the basis of heat transfer theory. The evaporation of the primary elements, which are Mg, Al, Zn and Mn in AZ series magnesium alloy, can be analyzed by the model, as well as the influence of keyhole radius varying on the temperature at vapor-solid interface offront keyhole wall. And dimensionless parameters are introduced to analyze the influence of the process condition on the thermal effect. The calculation results show that Mg and Zn are vulnerable to vaporize loss during the vacuum electron beam welding on AZ series magnesium alloy, and the evaporation of Mg occurs earlier than Zn. A longer electron beam acting duration and smaller keyhole size will increase the temperature of the front keyhole wall significantly, which has a considerable influence on the evaporation effect of the elements.
Vacuum electron beam welding Front keyhole wall Keyhole effect Heat transfer Keyhole dimension Magnesium alloy
Yi Luo Jinhe Liu Changhua Du Huibin Xu Chuntian Li
School of Material Science and Engineering, Northwestern Polytechnical University,Xi’an 710072, Chin School of Material Science and Engineering, Northwestern Polytechnical University,Xi’an 710072, Chin School of Material Science and Engineering, Chongqing University of Technology,Chongqing 400050, Chi School of Material Science and Engineering, Chongqing University of Technology, Chongqing 400050, Ch
国际会议
11th IUMRS International Conference in Asia(第十一届国际材联亚洲材料大会 IUMRS-ICA 2010)
青岛
英文
355-360
2010-09-25(万方平台首次上网日期,不代表论文的发表时间)