ML-DC ALGORITHM OF PARAMETER ESTIMATION FOR GAUSSIAN MIXTURE AUTOREGRESSIVE MODEL
With Gaussian mixture autoregressive model, the probability density and power spectrum density of non- Gaussian colored processes can be fit.Its parameters can be estimated through the ML-DC algorithm.After descriptions of the model and the estimation problem, maximum likelihood estimation of autoregressive parameters and the dynamic clutter algorithm for Gaussian mixture parameters are deduced, respectively.Based on them, ML-DC algorithm for coupling estimation between power spectrum density parameters and probability density parameters is built up.Finally, a numerical instance in simulation is illustrated where performance of estimation is discussed in detail.
Gaussian mixture autoregressive model Maximum likelihood estimation Dynamic clutter algorithm
LIU FENG MA CHAOYANG WANG PINGBO HONG LIXUE
Naval University of Engineering,Wuhan,China Navy Force No.92910,Zhoushan,China Navy Force No.91267,Fuzhou,China
国际会议
成都
英文
1030-1036
2011-11-25(万方平台首次上网日期,不代表论文的发表时间)