会议专题

ML-DC ALGORITHM OF PARAMETER ESTIMATION FOR GAUSSIAN MIXTURE AUTOREGRESSIVE MODEL

With Gaussian mixture autoregressive model, the probability density and power spectrum density of non- Gaussian colored processes can be fit.Its parameters can be estimated through the ML-DC algorithm.After descriptions of the model and the estimation problem, maximum likelihood estimation of autoregressive parameters and the dynamic clutter algorithm for Gaussian mixture parameters are deduced, respectively.Based on them, ML-DC algorithm for coupling estimation between power spectrum density parameters and probability density parameters is built up.Finally, a numerical instance in simulation is illustrated where performance of estimation is discussed in detail.

Gaussian mixture autoregressive model Maximum likelihood estimation Dynamic clutter algorithm

LIU FENG MA CHAOYANG WANG PINGBO HONG LIXUE

Naval University of Engineering,Wuhan,China Navy Force No.92910,Zhoushan,China Navy Force No.91267,Fuzhou,China

国际会议

2011 3rd International Conference on Computer Technology and Development(2011第三届计算机技术与发展国际会议 ICCTD2011)

成都

英文

1030-1036

2011-11-25(万方平台首次上网日期,不代表论文的发表时间)