会议专题

UPPER BOUNDS FOR THE D(β)-VERTEX-DISTINGUISHING EI-TOTAL CHROMATIC NUMBERS OF GRAPHS

Let G(V,E) be a simple connected graph, and |V(G)| > 2.Suppose k, β are both positive integers and f is a mapping from V(G)∪E(G) to 1, 2, ???, k, such that 1) □uv∈E (G)(u≠v), f(u)≠f(v); 2) □uv∈E(G)(u≠v), dG(u,v) ≤ β, where dG(u,v) denotes the distance between u and v, we have C(u)≠C(v), where C(u)=f(u)∪ f(uv)|uv∈E(G).Then f is called a k-D(β)-vertex-distinguishing El-total coloring of G.In this paper we study the upper bounds for the D(β)-vertexdistinguishing EI-total chromatic numbers by the probability method and prove that Xei,βvt(G) ≤ 32Δ(β+2)/Δ when Δ ≥ 5, β ≥ 4.

D(β)-vertex-distinguishing total coloring D(β)-vertex-distinguishing EI-total coloring D(β)-vertex-distinguishing EI-total chromatic number Lovasz Local Lemma

XINSHENG LIU ZHIQIANG WANG

College of Mathematics and Information Science,Northwest Normal University,Lanzhou,Gansu 730070,China

国际会议

2011 3rd International Conference on Computer Technology and Development(2011第三届计算机技术与发展国际会议 ICCTD2011)

成都

英文

1080-1084

2011-11-25(万方平台首次上网日期,不代表论文的发表时间)