Inverse Regression Analysis Method to Determine Mathematical Model of Dislocation Density Using Flow Stress Curves
The flow stress curves of Q345B microalloyed steel during hot compression deformation were obtained at 900-1100℃ and strain rates of 0.0110s-1 on Gleeble-3500 thermo-mechanical simulator. Based on the experimental results, a inverse regression analysis method was proposed to determine the mathematical model of dislocation density and its correlation coefficients using the flow stress curves, so as to laid the foundations for calculating carbonitrides precipitates, deformation resistance and the end-rolled strength of microalloyed steels during hot rolling precisely. The effects of the deformation parameters (strain rate and deformation temperature) and microstructural evolution (workhardening, dynamic recovery and dynamic recrystallization) on dislocation density were taken into account. Finally, the validity of the proposed model is discussed considering the plausibility of the parameters assessed for evaluating the dislocation density. It was proved that the model was reasonable and it could provide a guide to production.
Gleeble-3500 dislocation density microstructural evolution inverse regression analysis mathematical model
JIA Bin PENG Yan MA Bo
State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 0 State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 0
国际会议
2010 International Conference on Material and Manufacturing Technology(2010材料与制造技术国际会议 ICMMT2010)
重庆
英文
358-364
2010-09-17(万方平台首次上网日期,不代表论文的发表时间)