Thermodynamic Modelling of Phosphorus in Steelmaking Slags
The published phase diagrams of some key P2O5-containing systems which are relevant to the steelmaking slag and the available experimental data on phosphorus partitioning between liquid iron and slags consisting of SiO2-Al2O3-Fe2O3-FeO-MnO-MgO-CaO have been reviewed and assessed. A set of data under carefully controlled experimental conditions, which was considered to be more reliable based on the assessment, was selected for optimising the generalised central atom (GCA) model parameters of phosphorus-containing slag systems. The developed model database is proved to be able to represent the liquidus temperature of some key P2O5-containing systems and the phosphorus distribution ratio between the steelmaking slags and liquid iron reasonably well. With the developed GCA model database, the dephosphorization reaction in the steelmaking process was modelled under various operating conditions such as slag chemistry and temperature. The results show that the phosphorus distribution ratio between the slags and liquid iron displays a maximum point with variation of the FeOx content in the slag. It also shows that the phosphorus deportment to the slag is favored by decreasing the operating temperature and MgO content, and increasing the CaO/SiO2 ratio in the slag. Comparison with the model of the phosphorus distribution data from a commercial BOS furnace shows that operating conditions do not permit to reach P equilibrium contents. The dis-equilibrium degree of P was found to be increased with increasing slag viscosities.
Phosphorus steelmaking slag thermodynamic modeling GCA model dephosphorization
Chunlin CHEN Ling ZHANG Jean LEHMANN
CSIRO Process Science and Engineering, Box 312, Clayton South Vic 3169, Australia ArcelorMittal Global R&D Maizières BP 30320 57 283 Maizieres les, Metz Cedex, France
国际会议
Ninth International Conference on Molten Slags,Fluxes and Salts(第九届国际熔渣、溶剂与熔盐学术会议 MOLTEN12)
北京
英文
1-12
2012-05-27(万方平台首次上网日期,不代表论文的发表时间)