Determination of Experimental Conditions for Applying Hot Wire Method to Thermal Conductivity of Slag
In order to apply the hot wire method for metallurgical slag at steelmaking temperature, a numerical model was developed, cold model experiments were conducted and test measurements using a high temperature experimental setup were carried out. To minimize natural convection and obtain more reliable measurements, the crucible diameter, the hot-wire diameter, the applied current, the position of the wire in the crucible and the cooling on the upper surface of the crucible were studied. Investigations on the sheathing material of the circuit exposed to the slag were also made. The hot wire resistivity was measured to make the thermal conductivity calculation more reliable. It was found that only certain materials were suitable for slag measurements depending on slag composition and temperature. The wire diameter also played a major role, because of the heat generation per surface area. The thermal conductivity should be derived from the values measured during the first seconds. In this initial stage, the effect of the natural convection as a function of the wire position in the crucible, the cooling on the top surface and the diameter of the crucible are negligible. A compromise has to be made in choosing the electrical current, since higher current results in higher sensitivity but at the same time in more natural convection.
Thermal conductivity Molten slag Transient hot wire method Line source method
Bj(o)rn Glaser Luyao Ma Du Sichen
Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
国际会议
Ninth International Conference on Molten Slags,Fluxes and Salts(第九届国际熔渣、溶剂与熔盐学术会议 MOLTEN12)
北京
英文
1-21
2012-05-27(万方平台首次上网日期,不代表论文的发表时间)