Variational Harmonic Method for Parameterization of Computational Domain in 2D Isogeometric Analysis
In isogeometric anlaysis, parameterization of computational domain has great effects as mesh generation in finite element analysis. In this paper, based on the concept of harmonic map from the computational domain to parametric domain, a variational approach is proposed to construct the parameterization of computational domain for 2D isogeometric analysis. Different from the previous elliptic mesh generation method in finite element analysis, the proposed method focus on isogeometric version, and converts the elliptic PDE into a nonlinear optimization problem. A regular term is integrated into the optimization formulation to achieve more uniform grid near convex (concave) parts of the boundary. Several examples are presented to show the efficiency of the proposed method.
Gang Xu Bernard Mourrain Regis Duvigneau Andre Galligo
College of Computer Hangzhou Dianzi University Hangzhou,China GALAAD Team INRIA Sophia-Antipolis France OPALE Team INRIA Sophia-Antipolis France Department of Mathematics University of Nice Sophia-Antipolis France
国际会议
2011国际计算机辅助设计与图形学学术会议(CAD/Graphics 2011)
济南
英文
1-7
2011-09-15(万方平台首次上网日期,不代表论文的发表时间)