Color Point Cloud Registration with 4D ICP Algorithm
This paper presents methodologies to accelerate the registration of 3D point cloud segments by using hue data from the associated imagery. The proposed variant of the Iterative Closest Point (ICP) algorithm combines both normalized point range data and weighted hue value calculated from RGB data of an image registered 3D point cloud. A k-d tree based nearest neighbor search is used to associated common points in x, y, z, hue 4D space. The unknown rigid translation and rotation matrix required for registration is iteratively solved using Singular Value Decomposition (SVD) method. A mobile robot mounted scanner was used to generate color point cloud segments over a large area. The 4D ICP registration has been compared with typical 3D ICP and numerical results on the generated map segments shows that the 4D method resolves ambiguity in registration and converges faster than the 3D ICP.
Hao Men Biruk Gebre Kishore Pochiraju
Department of Mechanical Engineering & Design and Manufacturing Institute Stevens Institute of Technology Hoboken,NJ,07030,USA
国际会议
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
上海
英文
1511-1516
2011-05-09(万方平台首次上网日期,不代表论文的发表时间)