Multivariate Discretization for Bayesian Network Structure Learning in Robot Grasping
A major challenge in modeling with BNs is learning the structure from both discrete and multivariate continuous data. A common approach in such situations is to discretize continuous data before structure learning. However efficient methods to discretize high-dimensional variables are largely lacking. This paper presents a novel method specifically aiming at discretization of high-dimensional, high-correlated data. The method consists of two integrated steps: non-linear dimensionality reduction using sparse Gaussian process latent variable models, and discretization by application of a mixture model. The model is fully probabilistic and capable to facilitate structure learning from discretized data, while at the same time retain the continuous representation. We evaluate the effectiveness of the method in the domain of robot grasping. Compared with traditional discretization schemes, our model excels both in task classification and prediction of hand grasp configurations. Further, being a fully probabilistic model it handles uncertainty in the data and can easily be integrated into other frameworks in a principled manner.
Dan Song Carl Henrik Ek Kai Huebner Danica Kragic
KTH - Royal Institute of Technology,Stockholm,Sweden,as members of the Computer Vision & Active Perception Lab.,Centre for Autonomous Systems
国际会议
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
上海
英文
1944-1950
2011-05-09(万方平台首次上网日期,不代表论文的发表时间)