Parallelizing RRT on Distributed-Memory Architectures
This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems.
Didier Devaurs Thierry Sim(e)on Juan Cort(e)s
CNRS LAAS 7 avenue du colonel Roche,F-31077 Toulouse Cedex 4,France and Universit(e) de Toulouse UPS,INSA,INP,ISAE UT1,UTM,LAAS F-31077 Toulouse Cedex 4,France
国际会议
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
上海
英文
2261-2266
2011-05-09(万方平台首次上网日期,不代表论文的发表时间)