会议专题

Aerial SLAM with a Single Camera Using Visual Expectation

Micro aerial vehicles (MAVs) are a rapidly growing area of research and development in robotics. For autonomous robot operations, localization has typically been calculated using GPS, external camera arrays, or onboard range or vision sensing. In cluttered indoor or outdoor environments, onboard sensing is the only viable option. In this paper we present an appearance-based approach to visual SLAM on a flying MAV using only low quality vision. Our approach consists of a visual place recognition algorithm that operates on 1000 pixel images, a lightweight visual odometry algorithm, and a visual expectation algorithm that improves the recall of place sequences and the precision with which they are recalled as the robot flies along a similar path. Using data gathered from outdoor datasets, we show that the system is able to perform visual recognition with low quality, intermittent visual sensory data. By combining the visual algorithms with the RatSLAM system, we also demonstrate how the algorithms enable successful SLAM.

Michael J. Milford Felix Schill Peter Corke Robert Mahony Gordon Wyeth

School of Engineering Systems at the Queensland University of Technology,QLD,4000,Australia School of Engineering at the Australian National University,Canberra,ACT,0200,Australia

国际会议

2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)

上海

英文

2506-2512

2011-05-09(万方平台首次上网日期,不代表论文的发表时间)