Dynamic Chess: Strategic Planning for Robot Motion
We introduce and experimentally validate a novel algorithmic model for physical human-robot interaction with hybrid dynamics. Our computational solutions are complementary to passive and compliant hardware. We focus on the case where human motion can be predicted. In these cases, the robot can select optimal motions in response to human actions and maximize safety. By representing the domain as a Markov Game, we enable the robot to not only react to the human but also to construct an infinite horizon optimal policy of actions and responses. Experimentally, we apply our model to simulated robot sword defense. Our approach enables a simulated 7-DOF robot arm to block known attacks in any sequence. We generate optimized blocks and apply game theoretic tools to choose the best action for the defender in the presence of an intelligent adversary.
Tobias Kunz Peter Kingston Mike Stilman Magnus Egerstedt
Center for Robotics and Intelligent Machines at the Georgia Institute of Technology,Atlanta,GA,USA
国际会议
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
上海
英文
3796-3803
2011-05-09(万方平台首次上网日期,不代表论文的发表时间)