Integrating Grasp Planning with Online Stability Assessment using Tactile Sensing
This paper presents an integration of grasp planning and online grasp stability assessment based on tactile data. We show how the uncertainty in grasp execution posterior to grasp planning can be dealt with using tactile sensing and machine learning techniques. The majority of the state-of-theart grasp planners demonstrate impressive results in simulation. However, these results are mostly based on perfect scene/object knowledge allowing for analytical measures to be employed. It is questionable how well these measures can be used in realistic scenarios where the information about the object and robot hand may be incomplete and/or uncertain. Thus, tactile and force-torque sensory information is necessary for successful online grasp stability assessment. We show how a grasp planner can be integrated with a probabilistic technique for grasp stability assessment in order to improve the hypotheses about suitable grasps on different types of objects. Experimental evaluation with a three-fingered robot hand equipped with tactile array sensors shows the feasibility and strength of the integrated approach.
Yasemin Bekiroglu Kai Huebner Danica Kragic
Computer Vision and Active Perception Lab,Centre for Autonomous Systems,School of Computer Science and Communication,KTH,Stockholm,Sweden
国际会议
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
上海
英文
4750-4755
2011-05-09(万方平台首次上网日期,不代表论文的发表时间)