会议专题

Traffic Light Mapping and Detection

The outdoor perception problem is a major challenge for driver-assistance and autonomous vehicle systems. While these systems can often employ active sensors such as sonar, radar, and lidar to perceive their surroundings, the state of standard traffic lights can only be perceived visually. By using a prior map, a perception system can anticipate and predict the locations of traffic lights and improve detection of the light state. The prior map also encodes the control semantics of the individual lights. This paper presents methods for automatically mapping the three dimensional positions of traffic lights and robustly detecting traffic light state onboard cars with cameras. We have used these methods to map more than four thousand traffic lights, and to perform onboard traffic light detection for thousands of drives through intersections.

Nathaniel Fairfield Chris Urmson

Google,Inc

国际会议

2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)

上海

英文

5421-5426

2011-05-09(万方平台首次上网日期,不代表论文的发表时间)