会议专题

The Motion Grammar for Physical Human-Robot Games

We introduce the Motion Grammar, a powerful new representation for robot decision making, and validate its properties through the successful implementation of a physical human-robot game. The Motion Grammar is a formal tool for task decomposition and hybrid control in the presence of significant online uncertainty. In this paper, we describe the Motion Grammar, introduce some of the formal guarantees it can provide, and represent the entire game of human-robot chess through a single formal language. This language includes game-play, safe handling of human motion, uncertainty in piece positions, misplaced and collapsed pieces. We demonstrate the simple and effective language formulation through experiments on a 14-DOF manipulator interacting with 32 objects (chess pieces) and an unpredictable human adversary.

Manipulation Hybrid Control Formal Methods Planning

Neil Dantam Pushkar Kolhe Mike Stilman

Georgia Institute of Technology,Atlanta,Georgia,30332,USA

国际会议

2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)

上海

英文

5463-5469

2011-05-09(万方平台首次上网日期,不代表论文的发表时间)