A Tracking and Learning Method for On-road Potential Safety Hazard
Avoiding potential safety hazard is the primary task of vision-based assistant driving system(ADS). Potential safety hazard exists in driving individual vehicles. Although these hazards are unexpected, obvious characteristics exist for vehicles that make them happen, such as: relatively fast speed, changing lanes frequently and being occluded as shuttling in the busy traffic. All these characteristics go against on-road tracking for the unsafe vehicle. At present, the assistant driving system is only permitted in the field of obstracle detection and location. However, those systems are not involved in tracking of vehicles with potential safety hazard. The paper presents an approach to tracking and online learning of on-road vehicles with potential safety hazard. Further, we improve the method of online learning to the unsafe hazard. The performance of our tracking algorithm is evaluated on a public benchmark with test data from various challenging videos on different conditions. The experiment results demonstrate that, in the same condition, our method can obtain samples more efficiently and lead the classifier to converge more quickly.
Potential safety hazard online-learning vehicle tracking
Jian-wen Mo Sheng-chao Zhang Bo Yao
GuiLin University of Electronic Technology, Guilin, Guangxi 541004, China
国际会议
桂林
英文
1-8
2011-11-01(万方平台首次上网日期,不代表论文的发表时间)