会议专题

A Fingerprint Classification Algorithm Based on Combination of Local and Global Information

Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.

fingerprint classification singular point orientation field zero-pole model

Chongjin Liu Xiang Fu Junjie Bian Jufu Feng

Key Laboratory of Machine Perception School of Electronics Engineering and Computer Science, Peking Key Laboratory of Machine PerceptionSchool of Electronics Engineering and Computer Science, Peking U

国际会议

第七届多光谱图象处理与模式识别国际学术会议

桂林

英文

1-7

2011-11-01(万方平台首次上网日期,不代表论文的发表时间)