Power Flow and Sound Radiation of a Submerged Cylindrical Shell with Internal Structural
The vibrational power flow in a submerged infinite cylindrical shell with internal rings and bulkheads are studied analytically. The harmonic motion of the shell and the pressure field in the fluid is described by Flügge shell theory and Helmholtz equation, respectively. The coupling condition on the outer surface of the shell wall is introduced to obtain the vibrational equation of this coupled system. Both four kinds of forces (moments) between rings and shell and between bulkheads and shell are considered. The solution is obtained in series form by expanding the system responses in terms of the space harmonics of the spacing of both ring stiffeners and bulkheads. The vibrational power flow and radiated sound power are obtained and the influences of various complicating effects such as the ring, bulkhead and fluid loading on the results are analyzed. The analytic model is close to engineering practice, which will be valuable to the application on noise and vibration control of submarines and underwater pipes.
submerged cylindrical shell rings bulkheads power flow sound power
Jin Yan Juan Zhang
Engineering College, Guangdong Ocean University, Zhanjiang 524088, China
国际会议
上海
英文
321-325
2011-10-21(万方平台首次上网日期,不代表论文的发表时间)