会议专题

A Damage Model for SnAgCu Solder under Thermal Cycling

As the failure of solder joints under thermal cycling is as a result of creep-fatigue damage evolution, the failure mechanism of SnAgCu solder was studied by using the theory of continuum damage mechanics (CDM) and a new damage model was proposed here. A special bimetallic load frame with single joint-shear sample was designed to simulate actual joints in electronic packages. Thermo-mechanical cycling and thermal cycling tests were conducted to determine material parameters in the creep-fatigue interaction damage model, in which the damage variable D showed a power-dependence upon thermal cycles. The damage variable D=1-R0/R was selected and measured every dozens of cycles during thermal cycling tests to verify the model. The results showed that the experimental damage data can be fitted reasonably well by the relationship of the damage model proposed here for SnAgCu solder. And the evolution of solder microstructure during thermal cycling was observed by using metallographic sectioning and optical microscopy analysis, which gave the microscopic explanation for creep-fatigue damage evolution law of SnAgCu solder.

Hui Xiao Xiaoyan Li Na Liu Yongchang Yan

School of Materials Science and Engineering, Beijing University of Technology,Beijing, 100124, P.R.China

国际会议

2011 12th International Conference on Electronic Packaging Technology & High Density Packaging(2011 电子封装技术与高密度封装国际会议)

上海

英文

772-776

2011-08-08(万方平台首次上网日期,不代表论文的发表时间)