Microstructure Evolution of Pure Nickel up to a High Strain Level during Equal-Channel Angular Pressing
Nickel of 99.5% purity, with an initial grain size of ~23 um, was subjected to equal-channel angular pressing (ECAP) up to a strain of ~12 at room temperature via route Be. Mechanical properties and microstructures are investigated by tensile tests, microhardness tests,. TEM, and EBSD observations. Results of mechanical properties show that yield strength and tensile strength increase as strain increase up to a max value(σs~1009 Mpa, σb~1120 Mpa) at ε~8, and microhardness reaches its maximum of -370HV after 12 passes. Analysis by TEM showed that grain size of pure nickel was severely refined from ~23 um to several hundreds of nanometers after ECAP processing. Initial coarse grain are divided with lamellar boundaries and dislocation cell structures at low strain level, there has resulted in a homogenous and fine spacing of lamellar boundaries (~100 nm) after 4 passes of ECAP, low angle characters of those boundaries are revealed from corresponding SAED pattern; equiaxed grains of diameter with -98 nm come out among lamellar boundaries after 12 passes.
Fan Liu Yue Zhang Jing Tao Wang
Department of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,P.R.China
国际会议
5th International Conference on Nanomaterials by Severe Plastic Deformation(第五届剧烈塑性变形纳米材料国际会议)
南京
英文
319-324
2011-03-01(万方平台首次上网日期,不代表论文的发表时间)