Evolution of Adiabatic Shear Band in Ultra-Fine-Grained Iron under Dynamic Shear Loading
Ultra-fine-grained (UFG)/Nanocrystalline (NC) materials usually show reduced strain hardening and limited ductility due to formation of adiabatic shear band (ASB) under dynamic loading. In the present study, evolution of ASB in UFG Fe under dynamic shear loading was investigated. The UFG Fe was processed by equal-channel angular pressing (ECAP) via route Bc. After 6 passes, the grain size of UFG Fe reaches~600 ntn, as confirmed by means of Electron Back Scatter Diffraction (EBSD). Examination of micro-hardness and grain size of UFG Fe as a function of post-ECAP annealing temperature shows a transition from recovery to recrystallization at 500 ° C. The high-strain-rate response of UFG Fe was characterized by hat-shaped specimen set-ups in Hopkinson bar experiments. The characteristics of ASB as a function of shear displacement, such as thickness of shear band and micro-hardness inside the shear band, were examined by SEM and Vickers micro-indentation respectively.
Fuping Yuan Xiaolei Wu
State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics Chinese Academy of Science,Beijing 100190,China
国际会议
5th International Conference on Nanomaterials by Severe Plastic Deformation(第五届剧烈塑性变形纳米材料国际会议)
南京
英文
761-765
2011-03-01(万方平台首次上网日期,不代表论文的发表时间)