会议专题

Temperature Effects on the Mechanical Behavior of Ultrafine-Grained Material

The quasi-static and dynamic compression experiments of ultrafine-grained copper fabricated by equal channel angular pressing method were performed at temperatures ranging from 77 to 573K. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity were investigated. The results show that the flow stress of ultrafine-grained copper shows much larger sensitivity to testing temperature than that of coarse grained copper. However, the temperature sensitivity of ultrafine-grained copper to true strain is comparative weaker than that of coarse grained copper. For the ultrafine-grained copper, both the strain hardening rate and its sensitivity to temperature of ultrafine-grained copper are lower than those of its coarse counterpart. The SRS also displays apparent dependence on temperature. The activation volume for UFG-Cu is estimated to be on the order of~10b3 in current experiment temperature. It is suggested that the dislocationgrain boundary interactions process might be the dominant thermally activated mechanism for UFG-Cu.

Tao Suo Yu-long Li Feng Zhao Kui Xie

School of Aeronautics,Northwestern Polytechnical University,Xian 710072,China

国际会议

5th International Conference on Nanomaterials by Severe Plastic Deformation(第五届剧烈塑性变形纳米材料国际会议)

南京

英文

827-832

2011-03-01(万方平台首次上网日期,不代表论文的发表时间)