会议专题

High-speed dry tribological behaviors of CrNiMo steel in nitrogen and oxygen atmospheres

In this article, the high-speed dry sliding tribological behaviors of CrNiMo steel against brass in nitrogen and oxygen atmospheres are investigated using a pin-on-disc tribometer. The worn surface is characterized by scanning electron microscopy and electron dispersion spectrums analysis. The wear mechanisms of CrNiMo steel are also analyzed. The results indicate that the tribological properties of CrNiMo steel are coincidental with the law of dry sliding of metal, where the friction coefficients decreases with an increase in sliding speed and with normal load. However, the atmosphere has obvious effects on the tribological properties of CrNiMo steel. In the sliding process, friction heat plays an important role on the tribological properties of materials in high-speed dry friction. The high-speed wear mechanism of CrNiMo steel varies at different atmospheres. In a nitrogen atmosphere, the wear mechanism of CrNiMo steel is mainly characterized by adhesion at a lower speed and load. When the speed and load are increased, melting trace is found in the worn surface accompanied by an abrasive wear. In an oxygen atmosphere, the mechanism is characterized by adhesion at a lower speed and load; with an increase in speed and load, it gradually transformed into oxidation wear and abrasive wear. The difference of the wear mechanisms in the different atmospheres and test parameters is primarily due to the transfer films formed on the contact surfaces of the sliding pairs. In our experimental conditions, the surface film is mainly the metal film in nitrogen, whereas, it is the oxide film in oxygen.

DU San-ming ZHANG Yong-zhen SHANGGUAN Bao LIU Wei-min

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of College of Material Science and Engineering, Henan University of Science and Technology,Luoyang 4710 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of

国际会议

The 6th International Conference on Physical and Numerical Simulation of Materials Processing(第六届材料与热加工物理模拟及数值模拟国际学术会议 ICPNS 2010)

桂林

英文

1-10

2010-11-16(万方平台首次上网日期,不代表论文的发表时间)