会议专题

Wear Resistance of Fe-Cr-C-TiFe Fe-based Composite Coating Prepared by Precursor Carbonization-composition Process and Plasma Cladding

The sucrose was used as a carbonaceous precursor to fabricate composite alloy powder of Fe-Cr-C-TiFe by the precursor carbonization-composition process using the powder matirial of chromium, iron, tungsten, nickel and ferrotitanium. And the powder of Fe-Cr-C-TiFe was used to form a high-chromium iron-base composite coating on substrate of Q235 steel by plasma cladding process. The microstructure and hardness of the coating were investigated by scanning electron microscope (SEM), energy disperse spectroscopy (EDS), microhardness tester. Wear resistance of the coating was tested on wear tester at room temperature and high temperature 600℃ compared with the base material Q235 steel and bearing steel. Results show that the coating consists of TiC, (Cr,Fe)7C3 and austenite and the hardness of the coating is 3.4 times as high as the base body Q235 steel. The wear resistance of the coating at room temperature is 11-15 times as high as the base body Q235 steel. The wear resistance of the coating at high temperature 600℃ is 2.45 times as high as Q235 steel and is 1.5 times as high as bearing steel. The composite coating has excellent wear resistance because the reinforce phase TiC and (Cr,Fe) 7C3 in the coating have high hardness and good wear resistance. They can play key roles in process of friction and wear.

Junbo Liu Limei Wang

School of Mechanical and Electronic Engineering, Weifang University, Shandong Weifang 261061, CHINA School of Information and Control Engineering, Weifang University, Shandong Weifang, 261061, CHINA

国际会议

The 6th International Conference on Physical and Numerical Simulation of Materials Processing(第六届材料与热加工物理模拟及数值模拟国际学术会议 ICPNS 2010)

桂林

英文

1-6

2010-11-16(万方平台首次上网日期,不代表论文的发表时间)