会议专题

Numerical Simulation of Bone Remodelling in the Human Mandible Surrounding of a Dental Implant

Dental implants provide the most efficient and economic long-term solution for replacing lost teeth. However, placement of an implant changes the normal mechanical environment of jawbone, which causes the bone density to redistribute and adapt to the new environment by remodelling. This study aims to predict the density distribution in human jawbone surrounding a dental implant. Based on the two popular, yet distinctive theories for bone remodelling, a new remodelling algorithm is proposed The proposed algorithm is verified by a two-dimensional (2D) plate model. Then, a 2D finite element model of implant and jawbone is studied. The effects of two parameters, viz the reference value of strain energy density (SED) and ‘lazy zone’ region, on the density distribution are also investigated. This study has demonstrated that consideration of the lazy zone, is less important than consideration of the stress and strain (quantified as SED) induced within the bone. The proposed bone remodelling algorithm is a combination and further development of the two popular but distinctive bone remodelling theories. The shortcomings of the two theories have been overcome in the proposed algorithm.

Zhiqiang Lian Hong Guan

State Key Laboratory of Structural Analysis for Industrial Equipment Dalian University of Technology Griffith School of Engineering Griffith University Gold Coast Campus Queensland, Australia

国际会议

The 4th International Conference on Bioinformatics and Biomedical Engineering(第四届IEEE生物信息与生物医学工程国际会议 iCBBE 2010)

成都

英文

1-4

2010-06-18(万方平台首次上网日期,不代表论文的发表时间)