会议专题

THE ENERGY-SAVING DIAGNOSIS OF PWR NUCLEAR POWER STATION BASED ON THE THERMO-ECONOMIC ANALYSIS MODEL

Exergy analysis model of PWR nuclear power station is developed in which signal flowing graph theory is introduced to set up the relation equations between input exergy flow and output exergy flow. Then, combining with resource distribution between different components, thermo-economic analysis model is obtained by setting up unit thermo-economic cost equations of different components with productive structure graph. Taking Daya Bay as an example, exergy analysis and thermal-economic analysis are put forward with detailed distribution of exergy and investment cost. Finally, aimed at energy-saving, static diagnosis is performed in two levels: energy conservation and cost reduction, and on this basis dynamic diagnosis is developed through sensitivity analysis considering different influence factors such as main steam temperature, fuel price, construction capital investment, post treatment cost and so on. The introduction of signal flow graph theory and thermal-economic structure theory is helpful to do performance estimation with high speed and good accuracy. It provides a new way for rapid optimization and offers an effective theoretical method for energy-saving of PWR nuclear power station including advanced reactor such as AP1000.

CHEN Juan ZHOU Tao RAN Ke

Institute of Nuclear Thermal -Hydraulic Safety and Standardization North China Electric Power University Beijing, China, 102206

国际会议

18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)

西安

英文

1-8

2010-05-17(万方平台首次上网日期,不代表论文的发表时间)