会议专题

An Analytical Method for Modeling Two-Phase Gravity-Driven Drainage Systems in BOP Applications

Two-phase gravity-driven drainage systems are used in many applications within nuclear power Balance of Plant (BOP) applications such as the drain lines for moisture separator reheaters (MSRs) and feedwater heaters. Design of these systems is typically based on industry-oriented guidelines and operator-based experience. Changes in plant operation, such as uprates and equipment modification and/or replacement, are relatively common as plants seek to generate more power with greater efficiency. These plant modifications may inadvertently change system operation from design conditions and impose undesirable system transients. This paper seeks to provide a method for analyzing BOP drainage systems in an effort to characterize and mitigate drain flow transients. Previous methodologies diagnose and evaluate drain instability through measurement, empirical analysis, and operational experience. This paper identifies methods that can be utilized to generate computational models of discrete plant drainage systems that decrease the level of speculation involved in previous analyses. Additionally, a real-world application of this method is presented to demonstrate how computer modeling can accurately mimic plant transients.

Robert Stakenborghs Michael L.Morgan

ILD, Inc.Baton Rouge, Louisiana, USA

国际会议

18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)

西安

英文

1-10

2010-05-17(万方平台首次上网日期,不代表论文的发表时间)