A STOCHASTIC APPROACH TO NONLINEAR SEISMIC DESIGN SPECTRA
The purpose of this study is to examine the effects of yield strength ratios and damping values on the nonlinear response of Single Degree of Freedom Systems (S.D.F.S) subjected to earthquake ground motion. A stochastic approach to constructing design response spectra and period dependent strength reduction factors for current existing nonlinear design spectra is then proposed. Non-stationary stochastic models are adopted to characterize earthquake ground motion. Twenty simulated earthquakes accelerograms are generated for each of eight historical events using Autoregressive Moving Average (ARMA) techniques. The average of nonlinear response spectra for a given Structural period from a sample of twenty records for each event are calculated to obtain the response spectra. These response spectra are used to examine the effects of structural strength factors such as the yield strength ratio and damping value, and the effects of nonlinear stiffness models including the elastoplasic model, a stiffness degrading model and a stiffness softening model.
Malek Brahimi
Mechanical Engineering and Industrial Design Technology Department New York City College of Technology 300 Jay Street, Brooklyn, New York 11201
国际会议
18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)
西安
英文
1-10
2010-05-17(万方平台首次上网日期,不代表论文的发表时间)