A CORE CATCHER CONCEPT AND FIRST EXPERIMENTAL RESULTS
In a postulated core melt accident, if a molten core is released outside a reactor vessel despite taking mitigation actions, the core debris would relocate in the reactor cavity region and attack the concrete wall and basemat of the reactor cavity. This will potentially result in inevitable concrete decompositions and possible radiological releases. To prevent direct contact of the melt and basemat concrete of the cavity, a core catcher concept is suggested, which can passively arrest and stabilize the molten core material inside the reactor cavity. The core catcher system includes a retention device for the molten core material, a cooling water storage tank, and a compressed gas tank. Upon ablation of the sacrificial layer on top of the retention device while molten core material is discharged, a mixture of water and gas is injected from below. It is expected that a simultaneous injection of water and gas could prevent a possible steam explosion/spike. It could also suppress the rapid release of steam which might result in fast over-pressurization of the containment. A test facility for the core catcher using a thermite reaction technique for the generation of the melt was designed and constructed at KAERI. The first series of tests were performed by using a mixture of Al, Fe2O3, and CaO as a stimulant. As a first try, only water was injected from the bottom of the melt through five water injection nozzles when the melt front reached the water injection nozzles. In this paper, the core catcher concept and the related provisions are suggested. A description of the test facility for the core catcher, the thermite composition, and the methods of experiment is included. The first experimental results with only water injected from the bottom of the melt are discussed.
Hwan Yeol KIM Kwang Soon HA Jong Hwan KIM Seong Wan HONG Jin Ho SONG
Korea Atomic Energy Research Institute (KAERI), Daedeok-daero 1045, Yuseong-gu, Daejeon, 305-353, Republic of Korea
国际会议
18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)
西安
英文
1-8
2010-05-17(万方平台首次上网日期,不代表论文的发表时间)