FLOW CONTROL IN A MIXING-VANE GRID TO ENHANCE THERMAL HYDRAULIC PERFORMANCE
To investigate the effect of mixing-vane shape, heat flux at departure from nucleate boiling (DNB) and pressure loss were measured. Computational fluid dynamics (CFD) was utilized to discuss the flow control. The pressure loss and the DNB tests were performed in a water and a Freon loops, respectively. Two mixing-vanes were designed to have same projection area but different inclination. The rod-bundle was 5 by 5 and 17 by 17 respectively at the water and Freon tests. The experimental results showed that the slightly inclined mixing-vane produced the same DNB heat flux as the deeply inclined mixing-vane and did smaller pressure loss than it. Pressure loss of the two mixing-vane grids was different in spite of the same projection area. The result of CFD showed a swirl flow decaying along the main stream in the axial direction. The swirl was stronger in the deeply inclined mixing-vane, however it decayed faster whereas one maintained long in the slightly inclined mixingvane. This result suggested that the deep inclination caused a steep change in axial momentum to induce strong turbulence diffusion. This flow structure did not change the DNB heat flux because the two-phase discontinuity dominated the phenomena. This study provided a successful example of flow control in a mixing-vane grid.
Tsutomu Ikeno Tatsuya Sasakawa Shumpei Kakinoki Momonori Murase
Nuclear Fuel Industries, Ltd.Kumatori, Osaka, Japan
国际会议
18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)
西安
英文
1-8
2010-05-17(万方平台首次上网日期,不代表论文的发表时间)