RELAP SIMULATION ON BOILING AND FLOW PHENOMENA UNDER EXTERNAL REACTOR VESSEL COOLING CONDITION
External reactor vessel cooling (ERVC) of the In-vessel retention (IVR) system is widely accepted as a feasible way to remove decay heat from the lower head of the reactor pressure vessel (RPV) under severe accident (SA) conditions. However, some issues relating to ERVC still need to be evaluated before its application, such as boiling and flow phenomena and CHF prediction, etc. To study these key issues, an experimental study program named REPEC (Reactor Pressure Vessel External Cooling) is performed at Shanghai Jiao Tong University. Steady state experiments focusing on flow boiling phenomena investigation are carried out with comprehensive measurements, including temperature distribution, pressure drop and mass flow rate. As a part of studies on boiling mechanism and flow phenomena between RPV and the insulation, the experiment is analyzed and simulated with RELAP code. The code simulation covers most of the experimental cases, and a comparison between simulation results and experimental data are presented and discussed.
Yongchun Li Weihua Zhou Yanhua Yang Bo Kuang Xu Cheng
School of Nuclear Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240, China
国际会议
18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)
西安
英文
1-7
2010-05-17(万方平台首次上网日期,不代表论文的发表时间)