Thermal Aspects of Using Uranium Dicarbide Fuel in an SCWR at Maximum Heat-Flux Conditions
There are 6 prospective Generation-IV nuclear reactor conceptual designs. SuperCritical Water-cooled nuclear Reactors (SCWRs) are one of these design options. The reactor coolant in SCWRs will be light water operating at 25 MPa and up to 625 刟C, actually at conditions above the critical point of water (22.1 MPa and 374C, respectively). Current Nuclear Power Plants (NPPs) around the world operate at sub-critical pressures and temperatures achieving thermal efficiencies within the range of 30 35%. One of the major advantages of SCWRs is increased thermal efficiency up to 45 50% by utilizing the elevated temperatures and pressures. SuperCritical Water (SCW) behaves as a single-phase fluid. This prevents the occurrence of ¨dryout〃 phenomena. Additionally, operating at SCW conditions allows for a direct cycle to be utilized, thus simplifying the steam-flow circuit. The components required for steam generation and drying can be eliminated. Also, SCWRs have the ability to support hydrogen co-generation through thermochemical cycles. There are two main types of SCWR concepts being investigated, Pressure-Vessel (PV) and Pressure-Tube (PT) or Pressure-Channel (PCh) reactors. The current study models a single fuel channel from a 1200-MWel generic PT-type reactor with a pressure of 25 MPa, an inlet temperature of 350C and an outlet temperature of 625C. Since, SCWRs are presently in the design phase there are many efforts in determining fuel and sheath combinations suited for SCWRs. The design criterion to determine feasible material combinations is restricted by the following constraints: 1) The industry accepted limit for fuel centreline temperature is 1850C, and 2) sheath-material-temperature design limit is 850C. The primary candidate fuel is uranium dioxide. However; previous studies have shown that the fuel centreline temperature of an UO2 pellet might exceed the industry accepted limit for the fuel centreline temperature. Therefore, investigation on alternative fuels with higher thermal conductivities is required to respect the fuel centreline temperature limit. Sheath (clad) materials must be able to withstand the aggressive SCW conditions. Ideal sheath properties are a high-corrosion resistance and high-temperature mechanical strength. Uranium dicarbide (UC2) is selected as a choice fuel, because of its high thermal conductivity compared to that of conventional nuclear fuels such as UO2, Mixed OXide (MOX) and Thoria (ThO2). The chosen sheath material is Inconel-600. This Ni-based alloy has high-yield strength and maintains its integrity beyond the design limit of 850℃. This paper utilizes a generic SCWR fuel channel containing a continuous 43-element bundle string. The bulk-fluid, sheath and fuel-centreline temperature profiles together with Heat Transfer Coefficient (HTC) profile were calculated along the heated length of a fuel channel at the maximum Axial Heat Flux Profiles (AHFPs).
Caleb Pascoe Ashley Milner Hemal Patel Wargha Peiman Graham Richards Lisa Grande Igor Pioro
University of Ontario Institute of Technology, Faculty of Energy Systems and Nuclear Science 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4, Canada
国际会议
18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)
西安
英文
1-8
2010-05-17(万方平台首次上网日期,不代表论文的发表时间)