Thermal Aspects of Using Uranium Mononitride Fuel in a SuperCritical Water-Cooled Reactor at Maximum Heat Flux Conditions
Generation IV nuclear reactor technology is increasing in popularity worldwide. One of the six Generation-IV-reactor types are SuperCritical Water-cooled Reactors (SCWRs). The main objective of SCWRs is to increase substantially thermal efficiency of Nuclear Power Plants (NPPs) and thus, to reduce electricity costs. This reactor type is developed from concepts of both Light Water Reactors (LWRs) and supercritical fossil-fired steam generators. The SCWR is similar to a LWR, but operates at a higher pressure and temperature. The coolant used in a SCWR is light water, which has supercritical pressures and temperatures during operation. Typical light water operating parameters for SCWRs are a pressure of 25 MPa, an inlet temperature of 280 350℃, and an outlet temperature up to 625℃. Currently, NPPs have thermal efficiency about of 30 - 35%, whereas SCW NPPs will operate with thermal efficiencies of 45 - 50%. Furthermore, since SCWRs have significantly higher water parameters than current water-cooled reactors, they are able to support co-generation of hydrogen. Studies conducted on fuel-channel options for SCWRs have shown that using uranium dioxide (UO2) as a fuel at supercritical-water conditions might be questionable. The industry accepted limit for the fuel centerline temperature is 1850℃ and using UO2 would exceed this limit at certain conditions. Because of this problem, there have been other fuel options considered with a higher thermal conductivity. A generic 43-element bundle for an SCWR, using uranium mononitride (UN) as the fuel, is discussed in this paper. The material for the sheath is Inconel-600, because it has a high resistance to corrosion and can adhere to the maximum sheat h-temperature design limit of 850℃. For the purpose of this paper, the bundle will be analyzed at its maximum heat flux. This will verify if the fuel centerline temperature does not exceed 1850℃ and that the sheath temperature remains below the limit of 850℃.
Ashley Milner Caleb Pascoe Hemal Patel Wargha Peiman Graham Richards Igor Pioro
University of Ontario Institute of Technology Faculty of Energy Systems and Nuclear Science 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4, Canada
国际会议
18th International Conference on Nuclear Engineering(第18届国际核能工程大会 ICONE 18)
西安
英文
1-8
2010-05-17(万方平台首次上网日期,不代表论文的发表时间)