Role of Niobium in Advanced High Strength Steels for Automotive Applications
Two major drivers for the use of newer steels in the automotive industry is fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. A11 0f these factors are incentives for the U.S.automakers to use Advanced High Strength Steels (AHSS) to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake-hardenability. Another class of AHSS is the multi-phase steel which have a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio.Transformation Induced Plasticity (TRIP) steels is the latest class of AHSS steels finding interest among the U.S. automakers.These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. Finally, martensitic steels with very high strengths are also in use for certain parts. The role of Niobium in all of the above families of advanced steels for the automotive industry will be discussed in this paper.
low cycle fatigue microstructure hardness
BHATTACHARYA Debanshu
ArcelorMittal Global 3001 E.Columbus Drive;East Chicago,Indiana 46312,USA
国际会议
The 6th International Conference on High Strength Low Alloy Steels(第六届高强度低合金钢国际会议HSLA Steels2011)
北京
英文
77-81
2011-05-31(万方平台首次上网日期,不代表论文的发表时间)