会议专题

TCFOM: A robust traffic classification framework based on OC-SVM combined with MC-SVM

New application traffic occurring on Internet frequently challenges the traditional traffic classifiers based on machine learning. These classifiers always identify it inaccurately and assign it into one of their known classes forcibly, even though the extra class is labeled as ‘other’ when training. In this case, the precision of identifying known classes is reduced. In this paper, a robust traffic classification framework based on OC-SVM combined with MC-SVM (TCFOM) is presented. We capture several kinds of application traffic, and carry out an experiment under supervised environment. Using the OC-SVM, the unknown traffic is classified into extra class labeled as ‘other’. The precision of identifying known traffic is improved. Using the unknown traffic identified, the new classifying model is set up.TCFOM can classify the unknown traffic and extend well. We compare TCFOM with three classifiers respectively based on SVM, RBF network, Na?ve Bayes. Experimental results show that the robustness of TCFOM is best.

TCFOM traffic classification OC-SVM MCSVM robust

Gang Lu Hongli Zhang Xuefu Sha Cheng Chen Lizhi Peng

State Key Lab of Computer Information Content Security,Department of Computer Science, Harbin Institute of Technology, Harbin, China

国际会议

2010 International Conference on Communications and Intelligence Information Security(2010年国际信息与智能安全学术会议 ICCIIS2010)

南宁

英文

180-186

2010-10-13(万方平台首次上网日期,不代表论文的发表时间)