会议专题

Robustness Analyses for Repeated Mobility Surveys in Outdoor Advertising

A growing number of companies use mobility data in their day-to-day business. However, as the data grows older, new data has to be collected in order to keep applications up-to-date. Consequently, it is of great importance to know the impact that a different mobility sample may cause. This aspect of analysis has been largely neglected in mobility data mining research so far. In this paper we therefore analyze the robustness of performance measures with respect to a changed GPS sample in outdoor advertisement. The evaluation of outdoor advertising campaigns is a challenging application because it requires the evaluation of mobility data on a very fine spatial level. Thus, the application has a higher dependency on routes of individual test persons than classical mobility surveys. In our robustness analysis we apply bootstrapping and subsampling in order to measure the effect of a) a repeated mobility survey and b) a mobility survey of smaller size. We conduct our experiments on a real-world data set from Swiss outdoor advertising. Our results show that the effect is comparably small for a typical campaign and may be mitigated further by increasing the campaign size.

mobility mining robustness analysis sampling GPS outdoor advertising bootstrap standard error

Dirk Hecker Christine K(o)rner Michael May

Fraunhofer IAIS,Schloss Birlinghoven,53754 Sankt Augustin, Germany

国际会议

2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services(第一届空间数据挖掘与地理知识服务国际学术会议 ICSDM 2011)

福州

英文

148-153

2011-06-29(万方平台首次上网日期,不代表论文的发表时间)