New Aging Properties of the Clayton-Oakes Model Based on Multivariate Dispersion
In this work we present a recent definition of Multivariate Increasing Failure Rate (MIFR) based on the concept of multivariate dispersion. This new definition is an extension of the univariate characterization of IFR distributions under dispersive ordering of the residual lives. We apply this definition to the Clayton-Oakes model. In particular, we provide several conditions to order in the multivariate dispersion sense the residual lives of random vectors with a dependence structure given by the Clayton-Oakes survival copula. We illustrate our results with a graphical method.
IFR distributions multivariate increasing failure rate multivariate dispersion survival copula truncation Clayton-Oakes model
Jose Pablo Arias -Nicolas Julio Mulero Olga Nunez -Barrera Alfonso Suarez -Llorens
Departamento de Matematicas Universidad de Extremadura (Spain) Departamento de Estadfstica e I.O. Universidad de Alicante (Spain) Departamento de Estadfstica e I.O. Universidad de Cadiz (Spain)
国际会议
北京
英文
1008-1010
2011-06-20(万方平台首次上网日期,不代表论文的发表时间)