Upper Bounds on Eigenvalue Variation
Let A and A~= D1*AD2 be two nx n diagonal-izable matrices with eigendecomposition A = XAA-1 and A = XAX~1, where D1, D2, X and X are nonsingular, and A = diag(λ1,...,λn) and A = diag(λ1,... ,λn). Li 1 proved that if λ1 > λ2 > ...≥ λn≥0 and λ1 > λ2 > ... ≥ λn ≥ 0, then max1≥j≥n|λj-λj/λj|≤||X-1||2||X||2||D2||2 x||X-1(D1*-D2-1)X||2, In this note, we show that the bounds are valid under slightly more general conditions.
diagonalizable matrices eigenvalues spectral norm
Guoxing Wu Yinyin Huang Duanmei Zhou Yanjun Yan
Department of Mathematics Northeast Forestry University, 150040,Harbin, China
国际会议
昆明、丽江
英文
34-36
2011-04-15(万方平台首次上网日期,不代表论文的发表时间)