An Algorithm of Bayesian Networks Parameters Learning Based on Confidence Interval
This paper focuses on an interval parameter estimation of Bayesian Networks (BNs). Contrast to the point estimation used in most parameter learning algorithms, interval estimation algorithm (IEA) estimates the output nodes parameter of BNs with an interval estimation based on confidence level, it can raise BNs inference accuracy slightly as the prior knowledge is absence.
Bayesian networks parameter learning confidence interval estimation
Tilong Wang Lihong Guo Yan Li
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Ch Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Ch
国际会议
长春
英文
233-235
2010-08-24(万方平台首次上网日期,不代表论文的发表时间)