会议专题

The Performance Parameter Fault Diagnosis for Automobile Engine Based on ANFIS

This paper builds the fault diagnosis model and optimizes the input interface of the model by normalizing the initial data of the performance parameter for the automobile engine, carrying on information fusion and adopting the Adaptive Neural Fuzzy Interference System (ANFIS). The recognition rate of the model reaches 94.38% under the test of field test data. Corresponding BP neural network modeling and fuzzy recognition modeling, the model enjoys reliability, strong generalization ability, and high failure recognition rate. Moreover, it can effectively detect the performance parameter failure for the automobile engine.

fault diagnosis Performance Parameter fuzzy recognkation ANFIS

Li-Fang Kong Jun Wang Zhong-Hua Wang

Basic Departments Xuzhou Air Force College Jiangsu Xuzhou 221002, China Management Science Department Xuzhou Institute of Technology Jiangsu Xuzhou 221002, China

国际会议

2010 International Conference on Computer,Mechatronics,Control and Electronic Engineering(2010计算机、机电、控制与电子工程国际会议 CMCE 2010)

长春

英文

554-557

2010-08-24(万方平台首次上网日期,不代表论文的发表时间)