Duality in Fractional Semi-infinite Programmingwith generalized Fe-convexity
Some classes of generalization of convexity are given in the case of fractional semi-infinite programming problem, that is, Fε - convex Junction, Fe — quasi convex Junction and Fε -pseudo Junctions. In the framework of the new concept, a Mond—Weir type dual for a class of fractional semi-infinite programming problem is considered. Appropriate duality results are proved. The results obtained not only extend some of the present researches and provide a measurement of sensitivity for given problems to perturbations, but also can be apply to the questions occur in resource allocation, stock cutting problem in paper industry, agricultural planning and portfolio selection etc.
Fε- convex function Fε-quasi convex function Fε— pseudo functions Mond-Weir type dual fractional semi-infinite programming
Yong Yang LiHua Liu Tie Yan Lian
Faculty of science, Shaanxi University of Science and Technology, Xian 710021 China
国际会议
Third International Conference on Information and Computing(第三届信息与计算科学国际会议 ICIC 2010)
无锡
英文
37-39
2010-06-04(万方平台首次上网日期,不代表论文的发表时间)